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Received 26 July 2000

Abstract. We consider a lattice model of random heteropolymers at the interface between two
immiscible solvents. One solvent is preferred by one comonomer, while the other solvent is
preferred by the other comonomer. We investigate the phase diagram of the system and, in particular,
the transition from localization at the interface to delocalization into one of the two phases. We
prove some rigorous results concerning the system and, in particular, show that there is a phase
change as the solvent qualities for the two comonomers are varied. We use Monte Carlo methods
and exact enumeration and series analysis techniques to map out the form of the phase diagram.

1. Introduction

Random heteropolymers (i.e. copolymers with a random distribution of comonomers) can be
modelled as self-avoiding walks whose vertices are randomly coloured. The adsorption of such
polymers at an impenetrable surface has been studied and the system is known to exhibit a phase
transition. Moreover, the system is thermodynamically self-averaging (Orlandini et al 1999).
The situation which we shall investigate here is somewhat different, and what we have in mind is
as follows: the polymer is anchored at the interface between two immiscible solvents which we
callα andβ. It is energetically favourable for one of the two comonomers (A say) to be in phase
α and for the other comonomer (B) to be in phase β. We are interested in the localization of the
polymer at the interface when the energetic advantage of having the two comonomers in their
preferred phases overcomes the entropic term, and its delocalization when the entropic term
dominates. The heteropolymer is modelled as a randomly coloured self-avoiding walk, with
vertices coloured A with probability pA and B with probability pB = 1 − pA, independently.
We shall present some rigorous results on the behaviour of the quenched average free energy
in section 2, and on the form of the phase diagram in section 3. In section 4 we present
Monte Carlo and exact enumeration results for this model and investigate the detailed form of
the phase diagram in the special case of pA = 1

2 .
Similar models have been considered by several other groups including Bolthausen and

den Hollander (1997), Biskup and den Hollander (1999) and Maritan et al (1999) (see also
Garel et al 1990, Stepanow et al 1998). Bolthausen and den Hollander (1997) considered a
two-dimensional model in which the walk was partially directed. The edges of the walk carry
a randomly chosen ‘charge’ of ωi = ±1 and the reduced Hamiltonian is of the form

H = −λ
n∑
i=1

(ωi + h)�i (1.1)
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where the sum runs over the n edges of the walk. �i = ±1 depending on whether the
edge is in one phase or the other, so that one type of monomer prefers one phase and
the other type of monomer prefers the other phase. h is an asymmetry parameter which
controls the relative affinity of the two types of monomers for the two phases. λ essentially
plays the role of an inverse temperature. Bolthausen and den Hollander (1997) proved that
a localization/delocalization transition exists in this model and that there is a curve in the
(λ, h)-plane along which the transition takes place, and Biskup and den Hollander (1999)
extended this work by deriving results concerning the path of the walk. Maritan et al (1999)
considered both a random walk model and a self-avoiding walk model also with charges on
the comonomers so that there was an energetic advantage for a particular monomer to be in
one phase and a disadvantage for the monomer to be in the other phase. The charges were
distributed independently according to a Gaussian distribution. They gave a non-rigorous
argument that the system would always be localized when the polymer is neutral (i.e. where
the overall charge is zero) and that there is a localization/delocalization transition when the
polymer has a net charge.

2. Rigorous results concerning the quenched average free energy

We consider the cubic lattice Z3 whose vertices are the integer points in R3 and whose edges
join adjacent pairs of vertices which are unit distance apart. We consider n-edge self-avoiding
walks which start at the origin, and number the vertices of the walk i = 0, 1, . . . , n. We write
the coordinates of the ith vertex as ri = (xi, yi, zi). The vertices of the walk are coloured
randomly and independently, each being colouredAwith probabilitypA andB with probability
pB = 1 − pA. We write χi = +1 if vertex i is coloured A and −1 if vertex i is coloured
B. Since vertex 0 is always in the plane z = 0 its colour is irrelevant and we write χ for the
colouring χ1, χ2, . . . , χn. Let cn(vA, vB |χ) be the number of self-avoiding walks with n edges
and colouring χ which have vA A-vertices with positive z-coordinate and vB B-vertices with
negative z-coordinate. We define the partition function

Zn(α, β|χ) =
∑
vA,vB

cn(vA, vB |χ) eαvA+βvB (2.1)

and the corresponding free energy

κn(α, β|χ) = n−1 logZn(α, β|χ). (2.2)

Note that neither vertices of typeA nor of type B have an interaction with the interfacial plane
z = 0.

We say that a walk is x-unfolded if x0 � xi � xn for all i and z-unfolded if z0 � zi � zn for
all i. Walks can be x-unfolded (z-unfolded) by successive reflections in the planes containing
the vertices with smallest and largest x-coordinate (z-coordinate) (Hammersley and Welsh
1962). We define a subclass of self-avoiding walks which we call loops. An n-edge loop is an
n-edge self-avoiding walk with its zeroth vertex at the origin, its nth vertex in the plane z = 0
and satisfying the constraint that 0 = x0 < xi � xn for all i �= 0, n. (Loops are examples of
x-unfolded walks, but not all x-unfolded walks are loops.) Loops can be coloured in a similar
way to walks and we write ln(vA, vB |χ) for the number of n-edge loops with vA A-vertices
with positive z-coordinate and vB B-vertices with negative z-coordinate, given the colouring
χ = {χ1, χ2, . . . , χn}. We define the partition function

Ln(α, β|χ) =
∑
va,vb

ln(vA, vB |χ) eαvA+βvB . (2.3)
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Lemma 2.1. The quenched average limiting free energy for loops exists for all α, β < ∞.
That is, the limit

lim
n→∞〈n−1 logLn(α, β|χ)〉 ≡ κ̄(α, β) (2.4)

where 〈· · ·〉 is the expectation over random colourings, exists for all α, β <∞.

Proof. Loops can be concatenated in pairs to form larger loops by identifying the last vertex
of one loop with the first vertex of the other loop. This gives the inequality

lm+n(vA, vB |χ1 + χ2) �
∑
v1,v2

lm(v1, v2|χ1)ln(vA − v1, vB − v2|χ2) (2.5)

where we have written χ1 + χ2 for the concatenation of the colourings χ1 and χ2. Multiplying
both sides by eαvA+βvB and summing over vA and vB gives

Lm+n(α, β|χ1 + χ2) � Lm(α, β|χ1)Ln(α, β|χ2). (2.6)

Taking logarithms and averaging over the colourings χ1 and χ2 we obtain the functional
inequality

〈logLm+n(α, β|χ1 + χ2)〉 � 〈logLm(α, β|χ1)〉 + 〈logLn(α, β|χ2)〉 (2.7)

where the angular brackets denote expectations with respect to colourings. Since the number of
self-avoiding walks is exponentially bounded, so is 〈Ln(α, β|χ)〉 for α, β <∞ so the lemma
follows from (2.7) upon application of a standard theorem on super-additive functions (Hille
1948). �

We next prove a lemma concerning convexity.

Lemma 2.2. The quenched average free energy κ̄(α, β) is a convex function of α and β for
all α, β < ∞. Moreover, κ̄(α, β) is continuous and monotonically non-decreasing in both
variables.

Proof. From the definition it is clear that Ln(α, β|χ) is a monotonically non-decreasing
function of α and β and, for fixed n, is bounded in any fixed closed interval of values of α
and β. Consequently, to establish that 〈logLn(α, β|χ)〉 is a convex function of α and β it is
enough to prove that

〈logLn(α1, β1|χ)〉 + 〈logLn(α2, β2|χ)〉
2

� 〈logLn((α1 + α2)/2, (β1 + β2)/2|χ)〉 (2.8)

for all α, β ∈ R. Fix n and the colouring χ . By Cauchy’s inequality

Ln(α1, β1|χ)Ln(α2, β2|χ) =
∑
vA,vB

ln(vA, vB |χ) eα1vA+β1vB
∑
vA,vB

ln(vA, vB |χ) eα2vA+β2vB

�
(∑
vA,vB

ln(vA, vB |χ) e(α1+α2)vA/2+(β1+β2)vB/2

)2

= L2
n((α1 + α2)/2, (β1 + β2)/2|χ). (2.9)

Taking logarithms in (2.9) and averaging over χ gives (2.8). If the limit of a sequence of
convex functions exists, that limit is also a convex function, so that κ̄(α, β) is convex, and
hence continuous (since the function is monotonically non-decreasing and bounded in any
fixed closed interval of values of α and β). �

Now we relate the free energy for loops to the free energy for walks.
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Theorem 2.3. The quenched average free energy for walks limn→∞〈n−1 logZn(α, β|χ)〉 exists
and is equal to κ̄(α, β).

Proof. Since Ln(α, β|χ) � Zn(α, β|χ) we see immediately that

κ̄(α, β) � lim inf
n→∞ 〈n−1 logZn(α, β|χ)〉. (2.10)

To obtain a bound in the other direction we describe a construction for converting walks into
loops. Consider ann-edge walkω, with the first vertex at the origin, and letm = max[i|zi = 0].
If m = n the walk can be converted into a loop by unfolding in the x-direction, translating
through unit distance in the positive x-direction, and adding an edge to join the first vertex to
the origin. Otherwise zm+1 = zm ± 1 and we consider the case zm+1 = zm + 1. The other case
can be handled by a similar argument. Disconnect the walk at vertex m into two subwalks,
ω1 and ω2, with vertices 0, 1, . . . , m and m,m + 1, . . . , n. x-unfold ω1 to form ω3, x-unfold
ω2 and then z-unfold the resulting walk to form ω4. Suppose that the final vertex of ω4 has
z-coordinate equal to h. If h = 1 add an edge in the negative z-direction so that the final vertex
is in the plane z = 0, and reconnect this walk to ω3, using an additional intermediate edge
in the x-direction. Translate this walk in the x-direction and connect to the origin by adding
an edge. The resulting walk is a loop. If h > 1 we have two possibilities, h odd and h even.
Suppose h = 2p + 1 and m = max[i|zi = p + 1], where the zi are the z-coordinates of the
vertices of ω4. Disconnect ω4 at vertex m to form two subwalks ω5 and ω6. x-unfold ω5 to
form ω7 and ω6 to form ω8. Reflect ω8 in the plane z = p + 1 to form ω9. Reconnect ω3, ω7

and ω9, adding an additional edge in the x-direction at each rejoining position, and translate
and add an additional edge to join the resulting walk to the origin. The walk can be converted
to a loop by adding an edge joining the last vertex of the walk to a vertex in z = 0. If h = 2p
carry out a similar construction, but reflect in the plane z = p + 1, adding two edges at the
final stage. Different walks can give rise to the same loop by this procedure but the maximum
degeneracy associated with each unfolding operation is eO(

√
n). At most six edges are added

to the original walk during this construction. Consequently,

Ln(α, β|χ) � Zn(α, β|χ) � eO(
√
n)e6 max[α,β,0] max

0�k�6
Ln+k(α, β|χ ′) (2.11)

where the labellings χ ′ are derived from χ by randomly labelling any additional vertices.
Taking logarithms, dividing by n, taking expectations with respect to χ ′, and letting n → ∞,
we obtain

lim
n→∞〈n−1 logZn(α, β|χ)〉 = lim

n→∞〈n−1 logLn(α, β|χ)〉 = κ̄(α, β) (2.12)

which proves the theorem. �
We next give a proof that the system is thermodynamically self-averaging. To do this we

need an additional lemma. We define chn(vA, vB |χ) to be the number of self-avoiding walks
with n edges and colouring χ for which z0 = h (note that h can be positive, zero or negative)
and which have vA A-vertices with positive z-coordinate and vB B-vertices with negative
z-coordinate. Clearly, c0

n(vA, vB |χ) = cn(vA, vB |χ). Define the partition function

Zhn(α, β|χ) =
∑
vA,vB

chn(vA, vB |χ) eαvA+βvB (2.13)

and let

Z∗
n(α, β|χ) = max

h
Zhn(α, β|χ). (2.14)
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Lemma 2.4. For all α, β <∞
lim
n→∞〈n−1 logZ∗

n(α, β|χ)〉 = κ̄(α, β). (2.15)

Proof. Since the walks counted in the partition function Z∗
n(α, β|χ) clearly include loops we

have the inequality

Z∗
n(α, β|χ) � Ln(α, β|χ) (2.16)

so that

lim inf
n→∞ 〈n−1 logZ∗

n(α, β|χ)〉 � κ̄(α, β). (2.17)

Fix h, n, α, β and χ . Walks with their first vertex having z-coordinate h either (I) have at least
one vertex in z = 0 or (II) have no vertices in z = 0. We write the partition functions for walks
in these two classes as ZIn(α, β|χ) and ZIIn (α, β|χ), and note that

ZIn(α, β|χ) + ZIIn (α, β|χ) = Zhn(α, β|χ) � Z∗
n(α, β|χ)

� 2 max
h

max[ZIn(α, β|χ), ZIIn (α, β|χ)]. (2.18)

If the walk is in the first class let m be the first vertex in z = 0. Divide the walk into two
subwalks, one of lengthm and the other of length n−m. By reading one of these walks in the
reverse direction these two walks each start in z = 0. Consequently, the partition function for
walks in class I is bounded by

ZIn(α, β|χ) �
∑
m

Zm(α, β|χ̄1)Zn−m(α, β|χ2) � (n + 1)max
m
Zm(α, β|χ̄1)Zn−m(α, β|χ2)

(2.19)

where χ1 and χ2 are colourings whose concatenation is χ , and χ̄1 is the colouring χ1 read
in reverse order. If the walk is in class II translate the walk in the z-direction towards the
interface until at least one vertex is in z = 1 or −1 and no vertices are in z = 0. Whichever
side of the plane z = 0 the walk was on before the translation, it is still on the same side after
the translation, so there is no change in vA or vB . If there is a vertex of degree one at unit
distance from z = 0 add a vertex in z = 0 and an edge joining it to the vertex of degree one.
Otherwise consider the first vertex which is unit distance from z = 0 and suppose this is the
mth vertex. Then vertex m + 1 will have the same z-coordinate. Delete the edge joining the
mth and (m + 1)th vertices. Add two vertices a and b with the same x and y coordinates as
the mth and (m + 1)th vertices but with zero z-coordinate. Add three edges joining the mth
vertex to a, a to b and b to the (m + 1)th vertex. Divide the walk into two subwalks at vertex
a to give two walks with m + 1 and n − m + 1 edges, respectively. By reading one of these
walks in the reverse direction these two walks each start in z = 0. Consequently, the partition
function for walks in class II is bounded by

ZIIn (α, β|χ) � Zn+1(α, β|χ3) + Zn+1(α, β|χ̄4) +
∑
m

Zm+1(α, β|χ̄5)Zn−m+1(α, β|χ6) (2.20)

where χ3 and χ4 are one-point extensions of the colouring χ and χ̄4 is χ4 read in reverse.
Similarly χ5 and χ6 are colourings which are derived from χ by adding two interior vertices,
and χ̄5 is the reverse of χ5. Then

ZIIn (α, β|χ) � 3 max[Zn+1(α, β|χ3), Zn+1(α, β|χ̄4),

(n + 1)max
m
Zm+1(α, β|χ̄5)Zn−m+1(α, β|χ6)]. (2.21)
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The inequalities (2.19) and (2.21) together with theorem 2.3 then give

〈n−1 logZ∗
n(α, β|χ)〉 � κ̄(α, β) + o(1) (2.22)

when we average over colourings. This completes the proof. �

Theorem 2.5. The limit limn→∞ n−1 logZn(α, β|χ0) exists and is equal to κ̄(α, β) for almost
all fixed quenches χ0.

Proof. For fixed α, β <∞ and fixedm let n = mp+q with 0 � q < m. We consider a subset
of n-edge walks made up of a concatenation of p m-edge loops, labelled i = 1, 2, . . . , p and
a final q-edge loop, labelled p + 1. Writing χ0 = χ(1) + χ(2) + · · · + χ(p+1), where χ(i) is the
labelling of the ith loop, and χ0 is the labelling of the concatenated loops, we have

Zn(α, β|χ0) �
[
p∏
i=1

Lm(α, β|χ(i))
]
Lq(α, β|χ(p+1)). (2.23)

Taking logarithms and dividing by n gives

n−1 logZn(α, β|χ0) �
[

1

m(p + q/m)

p∑
i=1

logLm(α, β|χ(i))
]

+ n−1 logLq(α, β|χ(p+1)).

(2.24)

Letting p → ∞ with m fixed we obtain

lim inf
n→∞ n−1 logZn(α, β|χ0) � lim sup

p→∞
p−1

p∑
i=1

m−1 logLm(α, β|χ(i))

= 〈m−1 logLm(α, β|χ)〉 (2.25)

almost surely, where the equality comes from application of the strong law of large numbers.
To get a corresponding upper bound we concatenate a set of p walks, labelled i = 1, 2, . . . , p,
each with m edges, and a final walk with q edges, labelled i = p + 1, where the colouring
on the ith subwalk is χ(i) and χ(1) + · · · + χ(p+1). The z-coordinate of the first vertex in the
(i + 1)th walk is chosen to match the z-coordinate of the last vertex in the ith walk. This
concatenated set will contain all the corresponding self-avoiding walks (as well as the cases
where the subwalks are self- but not mutually avoiding) and, since Zhn(α, β|χ) � Z∗

n(α, β|χ)
we have the inequality

Zn(α, β|χ) �
[
p∏
i=1

Z∗
m(α, β|χ(i))

]
Z∗
q(α, β|χ(p+1)). (2.26)

Taking logarithms, dividing by n, and letting p → ∞ with m fixed gives

lim sup
n→∞

n−1 logZn(α, β|χ0) � 〈m−1 logZ∗
m(α, β|χ)〉 (2.27)

almost surely, where we have again used the strong law of large numbers. Letting m→ ∞ in
(2.25) and (2.27) and using lemma 2.4 gives

lim
n→∞ n

−1 logZn(α, β|χ0) = κ̄(α, β) (2.28)

for almost all colourings χ0. �



Localization transition for a randomly coloured self-avoiding walk 7909

3. The form of the phase diagram

In this section we prove some results concerning the α and β dependence of the quenched
average free energy which enable us to make some predictions about the form of the phase
diagram in the (α, β)-plane.

Lemma 3.1. For fixed α � 0 the limiting quenched average free energy κ̄(α, β) is independent
of β for β � 0.

Proof. For fixed n and a fixed colouring χ let voA and voB be the number of vertices coloured
A and B respectively. For α � 0 and β � 0 we have

Zn(α, β|χ) =
∑
vA,vB

cn(vA, vB |χ) eαvA+βvB

�
∑
vA,vB

cn(vA, vB |χ) eαv
o
A

= cneαvoA (3.1)

where cn is the number of n-edge self-avoiding walks. Similarly

Zn(α, β|χ) =
∑
vA,vB

cn(vA, vB |χ) eαvA+βvB

�
∑
vA

cn(vA, 0|χ) eαvA

� cn(voA, 0|χ) eαv
o
A

� c+
n−1eαv

o
A (3.2)

where c+
n is the number of n edge self-avoiding walks with the first vertex at the origin and

confined to the half-space z � 0. Since (Hammersley 1957, Whittington 1975)

lim
n→∞ n

−1 log c+
n = lim

n→∞ n
−1 log cn ≡ κ <∞ (3.3)

where κ is the connective constant of the simple cubic lattice, we have, from (3.1) and (3.2),

lim
n→∞〈n−1 logZn(α, β|χ)〉 = κ + α lim

n→∞[voA/n] ≡ κ + αpA. (3.4)

The right-hand side is independent of β which completes the proof. �

Of course, there is a similar result for the case of α � 0 and β � 0. We next look at the
first quadrant, α � 0 and β � 0.

Lemma 3.2. In the first quadrant, α, β � 0, the free energy κ̄(α, β) is singular along the
curve α �→ βc(α) where 0 � βc(α) � αpA/(1 − pA).

Proof. From the previous lemma, and the monotonic non-decreasing nature of κ̄(α, β) we see
that

κ̄(α, β) � κ + αpA (3.5)

for all β when α � 0. A similar argument shows that

κ̄(α, β) � κ + β(1 − pA) (3.6)
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for all α when β � 0. With α fixed at some positive value, take β > αpA/(1 − pA). Then

κ̄(α, β) � κ + β(1 − pA) > κ + αpA. (3.7)

Hence at fixed α > 0 κ̄(α, β) is a constant for β � 0 and greater than this constant for
β > αpA/(1 − pA). The function must therefore have a singularity at some value of β in the
interval 0 � β � αpA/(1 − pA), which proves the theorem. �

Although this lemma establishes that the free energy is singular along a curve in the first
quadrant, it does not answer the question about whether or not there is a non-trivial region in
which the walk is localized at the boundary z = 0. The next theorem addresses this question.

Theorem 3.3. In the region of the first quadrant, 0 � β � αpA/(1 − pA), the singularity
in κ̄(α, β) occurs for β less than some constant, uniformly in α. Similarly, in the region
0 � α � β(1 − pA)/pA, the singularity occurs for α less than some constant, uniformly in β.

Proof. Consider the fixed sequence of k + 6 colours, η = AABk+2AA, k � 2, where the
subscript indicates k + 2 copies of B. For a set of n Bernoulli trials where the outcome
is A with probability pA and B with probability 1 − pA, 0 < pA < 1, there exists a
δ = δ(k, pA) > 0, such that there are at least δn disjoint occurrences of η for all except
exponentially few sequences of trials. For each such sequence of colours consider the walks in
which, for each of the first δn occurrences of η, the first and lastBs are in z = 0 and the middle
k Bs are in z < 0, and the rest of the walk is in z > 0. This ensures that all the A-vertices are
in z > 0 and that δnk B-vertices are in z < 0. There is at least one such walk (e.g. in which
the subwalks in the z > 0 and z < 0 half-spaces are just straight lines in the x-direction). For
each such colouring χ the partition function satisfies the inequality

Zn(α, β|χ) � ev
o
Aα+δnkβ . (3.8)

Then

〈n−1 logZn(α, β|χ)〉 � 2−n[2n(1 − e−γ n)](pAα + δkβ) (3.9)

for some positive γ , and, letting n→ ∞,

κ̄(α, β) � pAα + δkβ. (3.10)

For fixed α > 0 we know that κ̄(α, β) = κ + αpA for β < βc(α)). Hence

βc(α) � κ

δk
. (3.11)

For α sufficiently large this is less than αpA/(1 − pA) so that we have a non-trivial region
in which localization occurs. Similarly, for fixed sufficiently large β there is a singularity in
κ̄(α, β) for some α � κ/δ′k < β(1 − pA)/pA where δ′ > 0. �

This implies that there is a region of the first quadrant where the walk is localized at the
interface, in the sense that it has a positive density of vertices in z = 0.

We next examine the third quadrant, α � 0, β � 0. We first consider α < 0, β > 0 where
κ̄(α, β) = κ + (1 − pA)β, independent of α. This result, combined with a lower bound on
κ̄(α, β) in the third quadrant, gives some information on the location of the phase boundary
from the delocalized to the localized phase. The idea is to make a connection to the problem
of adsorption at an impenetrable plane, which has been investigated for a random copolymer
by Orlandini et al (1999). Let b+

n(wA|χ) be the number of n-edges self-avoiding walks with
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colouring χ , beginning at the origin and confined to the half-space z � 0, with exactly wA
A-vertices in the plane z = 0. Define the partition function

B+
n (ω|χ) =

∑
wA

b+
n(wA|χ) eωwA. (3.12)

It is known (Orlandini et al 1999) that the limiting quenched average free energy

B(ω) = lim
n→∞〈n−1 logB+

n (ω|χ)〉 (3.13)

exists for all ω <∞ and that this free energy is singular at ω = ωc(pA) where 0 < ωc(pA) �
(κ − κ ′)/pA, κ is the connective constant of the simple cubic lattice and κ ′ is the connective
constant of the square lattice.

Theorem 3.4. κ̄(α, β) is singular in the third quadrant on a curve α �→ βc(α) where
βc(α) � −(κ − κ ′)/(1 − pA).

Proof. Fix α < 0. We are interested in the behaviour of the free energy for β < 0. Clearly,

Zn(α, β|χ) �
∑
vB

cn(0, vB |χ) eβvB . (3.14)

If we confine the walk to the half-space z � 0 then the number of B-vertices in z = 0, wB , is
given by

wB = voB − vB (3.15)

so that cn(0, vB |χ) � b+
n(wB). Hence

Zn(α, β|χ) �
∑
vB

cn(0, vB |χ) eβvB

�
∑
wB

b+
n(wB) eβv

o
B−βwB

= eβv
o
B

∑
wB

b+
n(wB) e−βwB

= eβv
o
BB+

n (−β|χ). (3.16)

Taking logarithms, dividing by n, averaging over χ and letting n→ ∞ gives

κ̄(α, β) � β(1 − pA) + B(−β). (3.17)

However, using the results of Orlandini et al (1999), B(−β) is equal to κ for β � βc and
greater than κ for β < βc. Moreover, 0 < −βc � (κ − κ ′)/(1 − pA). Hence

κ̄(α, β) > κ + (1 − pA)β (3.18)

for −β > (κ − κ ′)/(1 − pA). �

In figure 1 we sketch a phase diagram which is consistent with the results of this section.
Note that we have not proved that the phase boundaries pass through the origin.
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Figure 1. Sketch of the expected form of the phase diagram for pA = 1
2 . This form is consistent

with the rigorous results obtained in section 3.

4. Numerical results

In this section we present some exact enumeration and series analysis data which we use to
investigate the details of the phase diagram in the special case pA = 1

2 . We have enumerated
self-avoiding walks with up to 20 edges on Z3 keeping track of what we call the touch map
of the walks. That is, with each walk we associate a string of n letters, each of which is a,
b or s. An a in the ith position of the string means that vertex i has positive z-coordinate,
while a b means that vertex i has negative z-coordinate and an s denotes a zero z-coordinate.
For each such possible string we record the number of self-avoiding walks which correspond
to that string. The set of strings and their corresponding counts constitute the touch map.
The touch map is independent of the colouring χ but can be used with a particular colouring
sequence to compute the partition function Zn(α, β|χ) for that colouring. We then compute
κn(α, β|χ) = n−1 logZn(α, β|χ) and its average, 〈κn(α, β|χ)〉, over all 2n colourings χ .

We expect that

Qn(α, β) = e〈κn(α,β|χ)〉n ∼ nγ1−1eκ̄(α,β)n (4.1)

when the walks are in the delocalized phase, where γ1 is the surface exponent analogous to the
layer susceptibility exponent. In the localized phase (where the system has a two-dimensional
quality in that the walks cross the plane z = 0 a positive density of times) we expect a
similar expression but with γ1 replaced by γ2 = 43

32 , the exponent for self-avoiding walks in
two dimensions (Nienhuis 1982). Since the transition is expected to be second order a third
exponent associated with a tricritical behaviour is expected along the critical curve. From (4.1)
we obtain

Rn(α, β) =
√
Qn

Qn−2
= eκ̄(α,β)

(
1 +

γ1 − 1

n
+ O(n−2)

)
. (4.2)
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Plotting Rn(α, β) against 1/n should produce an asymptotically linear curve with eκ̄(α,β) as
the intercept. Since γ1 < 1 in three dimensions (see, for instance, Hegger and Grassberger
1994) the intercept should be approached from below, while the system is in the delocalized
phase. In the localized phase γ1 is replaced by γ2 (which is greater than 1) so the intercept
should be approached from above. Of course the situation is complicated by crossover effects
at small values of n.

Consider the behaviour in the first quadrant (α, β > 0). If we fix α > 0 and take a point in
the fourth quadrant (where β < 0) we know, from section 3, that the intercept will be eκ+α/2,
independent of β. As β is increased we should reach a critical value βc(α) beyond which
the intercept will be strictly greater than eκ+α/2. The point at which the intercept becomes
dependent on β signals the phase boundary. This, together with the change in slope of the
ratio plot (discussed in the previous paragraph), should allow us to locate the phase boundary
approximately. We have computed Rn(α, β) as a function of n and β for various positive
values of α and carried out the ratio analysis as indicated above.

Since we believe that the behaviour will be governed by the exponent γ1 in the delocalized
phase we can make use of the value of γ1 to accelerate the convergence. If we define

R′
n(α, β) = Rn(α, β) n

n + γ1 − 1
(4.3)

then, from (4.2), we see that

R′
n(α, β) = eκ̄(α,β)(1 + O(n−2)). (4.4)

PlottingR′
n(α, β) against 1/n should produce a curve with asymptotically zero slope provided

that we are in the delocalized phase. (Even if the value used for γ1 is slightly incorrect the
curve will still go to eκ̄(α,β) as n → ∞ but not with asymptotically zero slope.) We have
used our exact enumeration data (together with a recent estimate for κ due to MacDonald et al
(2000)) to estimate γ1 and we find γ1 = 0.680±0.004 in good agreement with the Monte Carlo
estimate (Hegger and Grassberger 1994) of 0.679±0.002. We have used γ1 = 0.68 in most of
our analysis. Similarly, one expects that in the localized phase the behaviour will be governed
by the exponent γ2. In practice, this turns out to be true well inside the localized region, but
with a slow crossover after the phase boundary is passed.

It is more convenient to look at

An(α, β) = R′
n(α, β) e−κ̄(α,0) (4.5)

since, at fixed α, An will be equal to unity for β values which correspond to the delocalized
phase. In figure 2 we give four examples of ratio plots of An with two values of the exponent
(γ1 and γ2) and the corresponding linear extrapolants (nAn − (n − 2)An−2)/2, at different
values of β, for α = 1.7. For β = 0 and for β = 0.4 we see clear evidence that An (when the
exponent being used is γ1) is approaching unity with asymptotically zero slope. For β = 1.2
it is quite clear that the curves are approaching a value greater than unity so that the system is
clearly in the localized phase. The curves for β = 1.0 suggest that the transition is somewhere
in this region.

For some values of α, increasing β still further might give rise to a second transition, this
time from the localized phase to a phase in which the walk is delocalized, but now into the
region with z < 0. From the arguments given in the proof of lemma 3.2 we know that

κ̄(α, β) � κ + β/2 (4.6)

and this inequality will be an equality in this delocalized phase. One can therefore examine the
behaviour of Rn (or R′

n or An) at fixed α, and look for values of β beyond which the intercept
is equal to eκ+β/2.
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Figure 2. An(α, β) plotted against 1/n for α = 1.7 and (a) β = 0, (b) β = 0.4, (c) β = 1.0
and (d) β = 1.2. An with γ1 = 0.68 (+), and the corresponding linear extrapolant (∗). An with
γ2 = 43

32 (×) and the corresponding linear extrapolant (�).

In the third quadrant the situation is quite similar. In this case we fix α < 0 and calculate
Rn as a function of n and β, starting with β > 0. In the second quadrant (α < 0, β > 0)
the intercept will be eκ+β/2 and will change with β in this way as β is decreased, until we
reach βc(α) after which point the intercept will be strictly larger than this value. Again we
expect a change in the sign of the slope of the ratio plots around the phase boundary, because
the behaviour should be controlled by γ1 in the delocalized phase and by γ2 in the localized
phase. We can make use of the fact that we know γ2 and have an accurate estimate of γ1, and
form the function R′

n(α, β) as for the first quadrant. Again it is convenient to define a function
analogous to that defined in (4.5) but now we define

An(α, β) = R′
n(α, β) e−κ̄(0,β). (4.7)

Figure 3 shows the behaviour of An and its linear extrapolants at four different values of β
for α = −3.0. Once again we are looking for the value of β at which the intercept ceases to
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Figure 3. An(α, β) plotted against 1/n for α = −3.0 and (a) β = 0, (b) β = −0.2, (c) β = −0.4
and (d) β = −0.6. An with γ1 = 0.68 (+), and the corresponding linear extrapolant (∗). An with
γ2 = 43

32 (×) and the corresponding linear extrapolant (�).

be equal to unity. For β = 0 and −0.2 the graphs suggest that the intercept is unity, while it
is certainly greater than unity when β = −0.6. It seems that the critical value of β is close
to −0.4. Our final estimates of the locations of the phase boundaries in the first and third
quadrants are given in figure 4.

We have also used Monte Carlo methods to investigate the localization behaviour. The
Monte Carlo algorithm which we have used is a Markov chain algorithm. The underlying
symmetric Markov chain uses a mixture of local and global moves in different proportions
depending on the relative values of α and β. In the asymmetric regime (α/β � 1) where the
walk is largely confined to a half-space, pivot (Lal 1969, Madras and Sokal 1988) and cut-and-
permute moves (Causo 2000) are used. These latter moves help to mitigate the quasi-ergodic
problems which the pivot algorithm can display in a quasi-confined geometry. The elementary
move in the cut-and-permute scheme is as follows. At a randomly chosen vertex of the walk,
the walk is disconnected into two subwalks,w1, attached to the surface at a vertex of degree one,
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Figure 4. Estimated locations of the phase boundaries in the first and third quadrants. In the
third quadrant we also include bounds obtained using theorem 3.4 and a numerical estimate of the
location of the singularity in B(−β). The diagonal line β = α is included as a guide to the eye.

andw2. A randomly chosen lattice symmetry operation is applied tow2, and the walk is rebuilt
permuting the order of the two subwalks. For details see Causo (2000). In the region where
β ≈ α local moves (Verdier and Stockmayer 1962) are used with increased probability, while
the cut-and-permute moves are used with lower probability. The whole process is implemented
using a multiple Markov chain technique (Geyer 1991, Tesi et al 1996). We have estimated
quantities such as 〈vA〉, 〈vB〉, 〈v2

A〉 − 〈vA〉2 and 〈v2
B〉 − 〈vB〉2 as a function of β at fixed α.

In figure 5 we show the β dependence of n−1〈vB〉 and n−1[〈v2
B〉 − 〈vB〉2] at α = −3. The

results are for n = 1000 and for an average over 12 random colourings of the walk. For β
close to zero we see that the B-vertices are essentially all in the z < 0 phase, and the walk is
delocalized. As β decreases the number ofB-vertices in the z < 0 phase decreases and, in fact,
these vertices primarily go into the interfacial plane z = 0, so that the walk becomes localized
around the interface. The behaviour of the ‘heat capacity’ n−1[〈v2

B〉 − 〈vB〉2] is exactly what
would be expected from theorem 3.4, and especially from (3.16). The heat capacity is close to
zero until β reaches a sufficiently negative value, and then goes through a peak whose shape
is characteristic of the asymmetric transition seen in adsorption problems.

5. Discussion

We have considered a coloured self-avoiding walk model of a random copolymer at an interface
between two immiscible liquids. There are several different Hamiltonians which one could
choose to model such systems and we have chosen to study the case in which there is an
energetic advantage for one comonomer to be in one phase and for the other comonomer to
be in the other phase. There is no energetic penalty if a monomer is in the other phase, and



Localization transition for a randomly coloured self-avoiding walk 7917

Figure 5. Monte Carlo estimates of n−1〈vB 〉 (�) and n−1[〈v2
B 〉 − 〈vB 〉2] (�) as a function of β

for α = −3 and n = 1000.

there is no energetic advantage or penalty if a monomer is in the dividing surface between
the two phases. For this case we have proved that the limiting quenched average free energy
exists and that the system is thermodynamically self-averaging. In addition we have proved
the existence of a phase transition from a delocalized phase to a localized phase, and derived
bounds which give qualitative information concerning the shapes of the phase boundaries. In
particular, these bounds are sufficient to establish that the localized region is a phase, and does
not degenerate to a curve in the phase diagram.

We have used exact enumeration and series analysis data to map out details of the phase
diagram, and to locate the phase boundaries, at least approximately. We have also reported
Monte Carlo data which give information concerning the nature of the localization.

There is a related model which can, to some extent, be handled in a similar way. In this
case the dividing surface between the two phases does not have the special property that there
is no energetic advantage or disadvantage for a monomer in this plane. In this case we write
vA for the number of A-vertices with non-negative z-coordinate and vB for the number of
B-vertices with negative z-coordinate. If dn(vA, vB |χ) is the corresponding number of n-edge
walks with colouring χ and

Dn(α, β|χ) =
∑
vA,vB

dn(vA, vB |χ) eαvA+βvB (5.1)

is the corresponding partition function, then the arguments in section 2 can be adapted to prove
a similar set of results for this model. The results of section 3 concerning the behaviour of
the free energy in the first, second and fourth quadrants all go over, with minor modifications,
to this model. However, theorem 3.4 has no analogous version since there is no special plane
into which the walk can retreat to avoid unfavourable interactions with the two solvents.

Let v∗
A be the number of A-monomers with negative z-coordinate and v∗

B be the number
of B-monomers with non-negative z-coordinate. Then

vA + v∗
A = voA (5.2)
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and

vB + v∗
B = voB. (5.3)

We note that

Dn(−α,−β|χ) = e−αvoA−βvoBDn(α, β|χ) (5.4)

so that in this model there is a mapping of the free energy between the first and third quadrants.
This model is related to a model similar in spirit to those considered by Bolthausen and

den Hollander (1997) and by Maritan et al (1999). Those authors considered models in which
a monomer can be energetically favoured in one solvent but energetically penalized in the other
solvent. We can construct a model which has an energetic penalty for a monomer to be in the
unfavourable solvent by writing the partition function

Qn(α, β|χ)) =
∑
vA,vB

dn(vA, vB |χ) eαvA+βvB−αv∗
A−βv∗

B

= e−αvoA−βvoB
∑
vA,vB

dn(vA, vB |χ) e2αvA+2βvB (5.5)

so that

lim
n→∞〈n−1 logQn(α, β|χ)〉 = −αpA − β(1 − pA) + lim

n→∞〈n−1 logDn(2α, 2β|χ)〉. (5.6)

Setting α = β reduces this to something like the model used by Maritan et al (but they used a
Gaussian distribution of charges, instead of the two ‘charges’ appearing in our model). Their
symmetric model (or neutral case) corresponds to pA = 1

2 and their more general model
corresponds to pA �= 1

2 , but still with β = α.
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