Localization transition for a randomly coloured self-avoiding walk at an interface

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 337903
(http://iopscience.iop.org/0305-4470/33/44/305)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:35

Please note that terms and conditions apply.

Localization transition for a randomly coloured self-avoiding walk at an interface

Richard Martin, Maria Serena Causo and Stuart G Whittington
Department of Chemistry, University of Toronto, Toronto, Canada M5S 3H6

Received 26 July 2000

Abstract

We consider a lattice model of random heteropolymers at the interface between two immiscible solvents. One solvent is preferred by one comonomer, while the other solvent is preferred by the other comonomer. We investigate the phase diagram of the system and, in particular, the transition from localization at the interface to delocalization into one of the two phases. We prove some rigorous results concerning the system and, in particular, show that there is a phase change as the solvent qualities for the two comonomers are varied. We use Monte Carlo methods and exact enumeration and series analysis techniques to map out the form of the phase diagram.

1. Introduction

Random heteropolymers (i.e. copolymers with a random distribution of comonomers) can be modelled as self-avoiding walks whose vertices are randomly coloured. The adsorption of such polymers at an impenetrable surface has been studied and the system is known to exhibit a phase transition. Moreover, the system is thermodynamically self-averaging (Orlandini et al 1999). The situation which we shall investigate here is somewhat different, and what we have in mind is as follows: the polymer is anchored at the interface between two immiscible solvents which we call α and β. It is energetically favourable for one of the two comonomers (A say) to be in phase α and for the other comonomer (B) to be in phase β. We are interested in the localization of the polymer at the interface when the energetic advantage of having the two comonomers in their preferred phases overcomes the entropic term, and its delocalization when the entropic term dominates. The heteropolymer is modelled as a randomly coloured self-avoiding walk, with vertices coloured A with probability p_{A} and B with probability $p_{B}=1-p_{A}$, independently. We shall present some rigorous results on the behaviour of the quenched average free energy in section 2, and on the form of the phase diagram in section 3. In section 4 we present Monte Carlo and exact enumeration results for this model and investigate the detailed form of the phase diagram in the special case of $p_{A}=\frac{1}{2}$.

Similar models have been considered by several other groups including Bolthausen and den Hollander (1997), Biskup and den Hollander (1999) and Maritan et al (1999) (see also Garel et al 1990, Stepanow et al 1998). Bolthausen and den Hollander (1997) considered a two-dimensional model in which the walk was partially directed. The edges of the walk carry a randomly chosen 'charge' of $\omega_{i}= \pm 1$ and the reduced Hamiltonian is of the form

$$
\begin{equation*}
H=-\lambda \sum_{i=1}^{n}\left(\omega_{i}+h\right) \Delta_{i} \tag{1.1}
\end{equation*}
$$

where the sum runs over the n edges of the walk. $\Delta_{i}= \pm 1$ depending on whether the edge is in one phase or the other, so that one type of monomer prefers one phase and the other type of monomer prefers the other phase. h is an asymmetry parameter which controls the relative affinity of the two types of monomers for the two phases. λ essentially plays the role of an inverse temperature. Bolthausen and den Hollander (1997) proved that a localization/delocalization transition exists in this model and that there is a curve in the (λ, h)-plane along which the transition takes place, and Biskup and den Hollander (1999) extended this work by deriving results concerning the path of the walk. Maritan et al (1999) considered both a random walk model and a self-avoiding walk model also with charges on the comonomers so that there was an energetic advantage for a particular monomer to be in one phase and a disadvantage for the monomer to be in the other phase. The charges were distributed independently according to a Gaussian distribution. They gave a non-rigorous argument that the system would always be localized when the polymer is neutral (i.e. where the overall charge is zero) and that there is a localization/delocalization transition when the polymer has a net charge.

2. Rigorous results concerning the quenched average free energy

We consider the cubic lattice Z^{3} whose vertices are the integer points in R^{3} and whose edges join adjacent pairs of vertices which are unit distance apart. We consider n-edge self-avoiding walks which start at the origin, and number the vertices of the walk $i=0,1, \ldots, n$. We write the coordinates of the i th vertex as $r_{i}=\left(x_{i}, y_{i}, z_{i}\right)$. The vertices of the walk are coloured randomly and independently, each being coloured A with probability p_{A} and B with probability $p_{B}=1-p_{A}$. We write $\chi_{i}=+1$ if vertex i is coloured A and -1 if vertex i is coloured B. Since vertex 0 is always in the plane $z=0$ its colour is irrelevant and we write χ for the colouring $\chi_{1}, \chi_{2}, \ldots, \chi_{n}$. Let $c_{n}\left(v_{A}, v_{B} \mid \chi\right)$ be the number of self-avoiding walks with n edges and colouring χ which have $v_{A} A$-vertices with positive z-coordinate and $v_{B} B$-vertices with negative z-coordinate. We define the partition function

$$
\begin{equation*}
Z_{n}(\alpha, \beta \mid \chi)=\sum_{v_{A}, v_{B}} c_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha v_{A}+\beta v_{B}} \tag{2.1}
\end{equation*}
$$

and the corresponding free energy

$$
\begin{equation*}
\kappa_{n}(\alpha, \beta \mid \chi)=n^{-1} \log Z_{n}(\alpha, \beta \mid \chi) \tag{2.2}
\end{equation*}
$$

Note that neither vertices of type A nor of type B have an interaction with the interfacial plane $z=0$.

We say that a walk is x-unfolded if $x_{0} \leqslant x_{i} \leqslant x_{n}$ for all i and z-unfolded if $z_{0} \leqslant z_{i} \leqslant z_{n}$ for all i. Walks can be x-unfolded (z-unfolded) by successive reflections in the planes containing the vertices with smallest and largest x-coordinate (z-coordinate) (Hammersley and Welsh 1962). We define a subclass of self-avoiding walks which we call loops. An n-edge loop is an n-edge self-avoiding walk with its zeroth vertex at the origin, its nth vertex in the plane $z=0$ and satisfying the constraint that $0=x_{0}<x_{i} \leqslant x_{n}$ for all $i \neq 0, n$. (Loops are examples of x-unfolded walks, but not all x-unfolded walks are loops.) Loops can be coloured in a similar way to walks and we write $l_{n}\left(v_{A}, v_{B} \mid \chi\right)$ for the number of n-edge loops with $v_{A} A$-vertices with positive z-coordinate and $v_{B} B$-vertices with negative z-coordinate, given the colouring $\chi=\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{n}\right\}$. We define the partition function

$$
\begin{equation*}
L_{n}(\alpha, \beta \mid \chi)=\sum_{v_{a}, v_{b}} l_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha v_{A}+\beta v_{B}} \tag{2.3}
\end{equation*}
$$

Lemma 2.1. The quenched average limiting free energy for loops exists for all $\alpha, \beta<\infty$. That is, the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle n^{-1} \log L_{n}(\alpha, \beta \mid \chi)\right\rangle \equiv \bar{\kappa}(\alpha, \beta) \tag{2.4}
\end{equation*}
$$

where $\langle\cdots\rangle$ is the expectation over random colourings, exists for all $\alpha, \beta<\infty$.
Proof. Loops can be concatenated in pairs to form larger loops by identifying the last vertex of one loop with the first vertex of the other loop. This gives the inequality

$$
\begin{equation*}
l_{m+n}\left(v_{A}, v_{B} \mid \chi_{1}+\chi_{2}\right) \geqslant \sum_{v_{1}, v_{2}} l_{m}\left(v_{1}, v_{2} \mid \chi_{1}\right) l_{n}\left(v_{A}-v_{1}, v_{B}-v_{2} \mid \chi_{2}\right) \tag{2.5}
\end{equation*}
$$

where we have written $\chi_{1}+\chi_{2}$ for the concatenation of the colourings χ_{1} and χ_{2}. Multiplying both sides by $\mathrm{e}^{\alpha v_{A}+\beta v_{B}}$ and summing over v_{A} and v_{B} gives

$$
\begin{equation*}
L_{m+n}\left(\alpha, \beta \mid \chi_{1}+\chi_{2}\right) \geqslant L_{m}\left(\alpha, \beta \mid \chi_{1}\right) L_{n}\left(\alpha, \beta \mid \chi_{2}\right) \tag{2.6}
\end{equation*}
$$

Taking logarithms and averaging over the colourings χ_{1} and χ_{2} we obtain the functional inequality

$$
\begin{equation*}
\left\langle\log L_{m+n}\left(\alpha, \beta \mid \chi_{1}+\chi_{2}\right)\right\rangle \geqslant\left\langle\log L_{m}\left(\alpha, \beta \mid \chi_{1}\right)\right\rangle+\left\langle\log L_{n}\left(\alpha, \beta \mid \chi_{2}\right)\right\rangle \tag{2.7}
\end{equation*}
$$

where the angular brackets denote expectations with respect to colourings. Since the number of self-avoiding walks is exponentially bounded, so is $\left\langle L_{n}(\alpha, \beta \mid \chi)\right\rangle$ for $\alpha, \beta<\infty$ so the lemma follows from (2.7) upon application of a standard theorem on super-additive functions (Hille 1948).

We next prove a lemma concerning convexity.
Lemma 2.2. The quenched average free energy $\bar{\kappa}(\alpha, \beta)$ is a convex function of α and β for all $\alpha, \beta<\infty$. Moreover, $\bar{\kappa}(\alpha, \beta)$ is continuous and monotonically non-decreasing in both variables.

Proof. From the definition it is clear that $L_{n}(\alpha, \beta \mid \chi)$ is a monotonically non-decreasing function of α and β and, for fixed n, is bounded in any fixed closed interval of values of α and β. Consequently, to establish that $\left\langle\log L_{n}(\alpha, \beta \mid \chi)\right\rangle$ is a convex function of α and β it is enough to prove that

$$
\begin{equation*}
\frac{\left\langle\log L_{n}\left(\alpha_{1}, \beta_{1} \mid \chi\right)\right\rangle+\left\langle\log L_{n}\left(\alpha_{2}, \beta_{2} \mid \chi\right)\right\rangle}{2} \geqslant\left\langle\log L_{n}\left(\left(\alpha_{1}+\alpha_{2}\right) / 2,\left(\beta_{1}+\beta_{2}\right) / 2 \mid \chi\right)\right\rangle \tag{2.8}
\end{equation*}
$$

for all $\alpha, \beta \in \mathcal{R}$. Fix n and the colouring χ. By Cauchy's inequality

$$
\begin{align*}
L_{n}\left(\alpha_{1}, \beta_{1} \mid \chi\right) L_{n}\left(\alpha_{2}, \beta_{2} \mid \chi\right) & =\sum_{v_{A}, v_{B}} l_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha_{1} v_{A}+\beta_{1} v_{B}} \sum_{v_{A}, v_{B}} l_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha_{2} v_{A}+\beta_{2} v_{B}} \\
& \geqslant\left(\sum_{v_{A}, v_{B}} l_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\left(\alpha_{1}+\alpha_{2}\right) v_{A} / 2+\left(\beta_{1}+\beta_{2}\right) v_{B} / 2}\right)^{2} \\
& =L_{n}^{2}\left(\left(\alpha_{1}+\alpha_{2}\right) / 2,\left(\beta_{1}+\beta_{2}\right) / 2 \mid \chi\right) \tag{2.9}
\end{align*}
$$

Taking logarithms in (2.9) and averaging over χ gives (2.8). If the limit of a sequence of convex functions exists, that limit is also a convex function, so that $\bar{\kappa}(\alpha, \beta)$ is convex, and hence continuous (since the function is monotonically non-decreasing and bounded in any fixed closed interval of values of α and β).

Now we relate the free energy for loops to the free energy for walks.

Theorem 2.3. The quenched average free energyfor walks $\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}(\alpha, \beta \mid \chi)\right\rangle$ exists and is equal to $\bar{\kappa}(\alpha, \beta)$.

Proof. Since $L_{n}(\alpha, \beta \mid \chi) \leqslant Z_{n}(\alpha, \beta \mid \chi)$ we see immediately that

$$
\begin{equation*}
\bar{\kappa}(\alpha, \beta) \leqslant \liminf _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}(\alpha, \beta \mid \chi)\right\rangle . \tag{2.10}
\end{equation*}
$$

To obtain a bound in the other direction we describe a construction for converting walks into loops. Consider an n-edge walk ω, with the first vertex at the origin, and let $m=\max \left[i \mid z_{i}=0\right]$. If $m=n$ the walk can be converted into a loop by unfolding in the x-direction, translating through unit distance in the positive x-direction, and adding an edge to join the first vertex to the origin. Otherwise $z_{m+1}=z_{m} \pm 1$ and we consider the case $z_{m+1}=z_{m}+1$. The other case can be handled by a similar argument. Disconnect the walk at vertex m into two subwalks, ω_{1} and ω_{2}, with vertices $0,1, \ldots, m$ and $m, m+1, \ldots, n$. x-unfold ω_{1} to form ω_{3}, x-unfold ω_{2} and then z-unfold the resulting walk to form ω_{4}. Suppose that the final vertex of ω_{4} has z-coordinate equal to h. If $h=1$ add an edge in the negative z-direction so that the final vertex is in the plane $z=0$, and reconnect this walk to ω_{3}, using an additional intermediate edge in the x-direction. Translate this walk in the x-direction and connect to the origin by adding an edge. The resulting walk is a loop. If $h>1$ we have two possibilities, h odd and h even. Suppose $h=2 p+1$ and $m=\max \left[i \mid z_{i}=p+1\right]$, where the z_{i} are the z-coordinates of the vertices of ω_{4}. Disconnect ω_{4} at vertex m to form two subwalks ω_{5} and ω_{6}. x-unfold ω_{5} to form ω_{7} and ω_{6} to form ω_{8}. Reflect ω_{8} in the plane $z=p+1$ to form ω_{9}. Reconnect ω_{3}, ω_{7} and ω_{9}, adding an additional edge in the x-direction at each rejoining position, and translate and add an additional edge to join the resulting walk to the origin. The walk can be converted to a loop by adding an edge joining the last vertex of the walk to a vertex in $z=0$. If $h=2 p$ carry out a similar construction, but reflect in the plane $z=p+1$, adding two edges at the final stage. Different walks can give rise to the same loop by this procedure but the maximum degeneracy associated with each unfolding operation is $\mathrm{e}^{\mathrm{O}(\sqrt{n})}$. At most six edges are added to the original walk during this construction. Consequently,

$$
\begin{equation*}
L_{n}(\alpha, \beta \mid \chi) \leqslant Z_{n}(\alpha, \beta \mid \chi) \leqslant \mathrm{e}^{\mathrm{O}(\sqrt{n})} \mathrm{e}^{6 \max [\alpha, \beta, 0]} \max _{0 \leqslant k \leqslant 6} L_{n+k}\left(\alpha, \beta \mid \chi^{\prime}\right) \tag{2.11}
\end{equation*}
$$

where the labellings χ^{\prime} are derived from χ by randomly labelling any additional vertices. Taking logarithms, dividing by n, taking expectations with respect to χ^{\prime}, and letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}(\alpha, \beta \mid \chi)\right\rangle=\lim _{n \rightarrow \infty}\left\langle n^{-1} \log L_{n}(\alpha, \beta \mid \chi)\right\rangle=\bar{\kappa}(\alpha, \beta) \tag{2.12}
\end{equation*}
$$

which proves the theorem.
We next give a proof that the system is thermodynamically self-averaging. To do this we need an additional lemma. We define $c_{n}^{h}\left(v_{A}, v_{B} \mid \chi\right)$ to be the number of self-avoiding walks with n edges and colouring χ for which $z_{0}=h$ (note that h can be positive, zero or negative) and which have $v_{A} A$-vertices with positive z-coordinate and $v_{B} B$-vertices with negative z-coordinate. Clearly, $c_{n}^{0}\left(v_{A}, v_{B} \mid \chi\right)=c_{n}\left(v_{A}, v_{B} \mid \chi\right)$. Define the partition function

$$
\begin{equation*}
Z_{n}^{h}(\alpha, \beta \mid \chi)=\sum_{v_{A}, v_{B}} c_{n}^{h}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha v_{A}+\beta v_{B}} \tag{2.13}
\end{equation*}
$$

and let

$$
\begin{equation*}
Z_{n}^{*}(\alpha, \beta \mid \chi)=\max _{h} Z_{n}^{h}(\alpha, \beta \mid \chi) \tag{2.14}
\end{equation*}
$$

Lemma 2.4. For all $\alpha, \beta<\infty$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}^{*}(\alpha, \beta \mid \chi)\right\rangle=\bar{\kappa}(\alpha, \beta) \tag{2.15}
\end{equation*}
$$

Proof. Since the walks counted in the partition function $Z_{n}^{*}(\alpha, \beta \mid \chi)$ clearly include loops we have the inequality

$$
\begin{equation*}
Z_{n}^{*}(\alpha, \beta \mid \chi) \geqslant L_{n}(\alpha, \beta \mid \chi) \tag{2.16}
\end{equation*}
$$

so that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}^{*}(\alpha, \beta \mid \chi)\right\rangle \geqslant \bar{\kappa}(\alpha, \beta) \tag{2.17}
\end{equation*}
$$

Fix h, n, α, β and χ. Walks with their first vertex having z-coordinate h either (I) have at least one vertex in $z=0$ or (II) have no vertices in $z=0$. We write the partition functions for walks in these two classes as $Z_{n}^{I}(\alpha, \beta \mid \chi)$ and $Z_{n}^{I I}(\alpha, \beta \mid \chi)$, and note that

$$
\begin{align*}
Z_{n}^{I}(\alpha, \beta \mid \chi)+Z_{n}^{I I}(\alpha, \beta \mid \chi) & =Z_{n}^{h}(\alpha, \beta \mid \chi) \leqslant Z_{n}^{*}(\alpha, \beta \mid \chi) \\
& \leqslant 2 \max _{h} \max \left[Z_{n}^{I}(\alpha, \beta \mid \chi), Z_{n}^{I I}(\alpha, \beta \mid \chi)\right] \tag{2.18}
\end{align*}
$$

If the walk is in the first class let m be the first vertex in $z=0$. Divide the walk into two subwalks, one of length m and the other of length $n-m$. By reading one of these walks in the reverse direction these two walks each start in $z=0$. Consequently, the partition function for walks in class I is bounded by

$$
\begin{equation*}
Z_{n}^{I}(\alpha, \beta \mid \chi) \leqslant \sum_{m} Z_{m}\left(\alpha, \beta \mid \bar{\chi}_{1}\right) Z_{n-m}\left(\alpha, \beta \mid \chi_{2}\right) \leqslant(n+1) \max _{m} Z_{m}\left(\alpha, \beta \mid \bar{\chi}_{1}\right) Z_{n-m}\left(\alpha, \beta \mid \chi_{2}\right) \tag{2.19}
\end{equation*}
$$

where χ_{1} and χ_{2} are colourings whose concatenation is χ, and $\bar{\chi}_{1}$ is the colouring χ_{1} read in reverse order. If the walk is in class II translate the walk in the z-direction towards the interface until at least one vertex is in $z=1$ or -1 and no vertices are in $z=0$. Whichever side of the plane $z=0$ the walk was on before the translation, it is still on the same side after the translation, so there is no change in v_{A} or v_{B}. If there is a vertex of degree one at unit distance from $z=0$ add a vertex in $z=0$ and an edge joining it to the vertex of degree one. Otherwise consider the first vertex which is unit distance from $z=0$ and suppose this is the m th vertex. Then vertex $m+1$ will have the same z-coordinate. Delete the edge joining the m th and $(m+1)$ th vertices. Add two vertices a and b with the same x and y coordinates as the m th and $(m+1)$ th vertices but with zero z-coordinate. Add three edges joining the m th vertex to a, a to b and b to the $(m+1)$ th vertex. Divide the walk into two subwalks at vertex a to give two walks with $m+1$ and $n-m+1$ edges, respectively. By reading one of these walks in the reverse direction these two walks each start in $z=0$. Consequently, the partition function for walks in class II is bounded by
$Z_{n}^{I I}(\alpha, \beta \mid \chi) \leqslant Z_{n+1}\left(\alpha, \beta \mid \chi_{3}\right)+Z_{n+1}\left(\alpha, \beta \mid \bar{\chi}_{4}\right)+\sum_{m} Z_{m+1}\left(\alpha, \beta \mid \bar{\chi}_{5}\right) Z_{n-m+1}\left(\alpha, \beta \mid \chi_{6}\right)$
where χ_{3} and χ_{4} are one-point extensions of the colouring χ and $\bar{\chi}_{4}$ is χ_{4} read in reverse. Similarly χ_{5} and χ_{6} are colourings which are derived from χ by adding two interior vertices, and $\bar{\chi}_{5}$ is the reverse of χ_{5}. Then

$$
\begin{align*}
Z_{n}^{I I}(\alpha, \beta \mid \chi) \leqslant & 3 \max \left[Z_{n+1}\left(\alpha, \beta \mid \chi_{3}\right), Z_{n+1}\left(\alpha, \beta \mid \bar{\chi}_{4}\right)\right. \\
& \left.(n+1) \max _{m} Z_{m+1}\left(\alpha, \beta \mid \bar{\chi}_{5}\right) Z_{n-m+1}\left(\alpha, \beta \mid \chi_{6}\right)\right] . \tag{2.21}
\end{align*}
$$

The inequalities (2.19) and (2.21) together with theorem 2.3 then give

$$
\begin{equation*}
\left\langle n^{-1} \log Z_{n}^{*}(\alpha, \beta \mid \chi)\right\rangle \leqslant \bar{\kappa}(\alpha, \beta)+o(1) \tag{2.22}
\end{equation*}
$$

when we average over colourings. This completes the proof.
Theorem 2.5. The limit $\lim _{n \rightarrow \infty} n^{-1} \log Z_{n}\left(\alpha, \beta \mid \chi_{0}\right)$ exists and is equal to $\bar{\kappa}(\alpha, \beta)$ for almost all fixed quenches χ_{0}.

Proof. For fixed $\alpha, \beta<\infty$ and fixed m let $n=m p+q$ with $0 \leqslant q<m$. We consider a subset of n-edge walks made up of a concatenation of $p m$-edge loops, labelled $i=1,2, \ldots, p$ and a final q-edge loop, labelled $p+1$. Writing $\chi_{0}=\chi^{(1)}+\chi^{(2)}+\cdots+\chi^{(p+1)}$, where $\chi^{(i)}$ is the labelling of the i th loop, and χ_{0} is the labelling of the concatenated loops, we have

$$
\begin{equation*}
Z_{n}\left(\alpha, \beta \mid \chi_{0}\right) \geqslant\left[\prod_{i=1}^{p} L_{m}\left(\alpha, \beta \mid \chi^{(i)}\right)\right] L_{q}\left(\alpha, \beta \mid \chi^{(p+1)}\right) \tag{2.23}
\end{equation*}
$$

Taking logarithms and dividing by n gives

$$
\begin{equation*}
n^{-1} \log Z_{n}\left(\alpha, \beta \mid \chi_{0}\right) \geqslant\left[\frac{1}{m(p+q / m)} \sum_{i=1}^{p} \log L_{m}\left(\alpha, \beta \mid \chi^{(i)}\right)\right]+n^{-1} \log L_{q}\left(\alpha, \beta \mid \chi^{(p+1)}\right) \tag{2.24}
\end{equation*}
$$

Letting $p \rightarrow \infty$ with m fixed we obtain

$$
\begin{align*}
\liminf _{n \rightarrow \infty} n^{-1} \log Z_{n}\left(\alpha, \beta \mid \chi_{0}\right) & \geqslant \limsup _{p \rightarrow \infty} p^{-1} \sum_{i=1}^{p} m^{-1} \log L_{m}\left(\alpha, \beta \mid \chi^{(i)}\right) \\
& =\left\langle m^{-1} \log L_{m}(\alpha, \beta \mid \chi)\right\rangle \tag{2.25}
\end{align*}
$$

almost surely, where the equality comes from application of the strong law of large numbers. To get a corresponding upper bound we concatenate a set of p walks, labelled $i=1,2, \ldots, p$, each with m edges, and a final walk with q edges, labelled $i=p+1$, where the colouring on the i th subwalk is $\chi^{(i)}$ and $\chi^{(1)}+\cdots+\chi^{(p+1)}$. The z-coordinate of the first vertex in the $(i+1)$ th walk is chosen to match the z-coordinate of the last vertex in the i th walk. This concatenated set will contain all the corresponding self-avoiding walks (as well as the cases where the subwalks are self- but not mutually avoiding) and, since $Z_{n}^{h}(\alpha, \beta \mid \chi) \leqslant Z_{n}^{*}(\alpha, \beta \mid \chi)$ we have the inequality

$$
\begin{equation*}
Z_{n}(\alpha, \beta \mid \chi) \leqslant\left[\prod_{i=1}^{p} Z_{m}^{*}\left(\alpha, \beta \mid \chi^{(i)}\right)\right] Z_{q}^{*}\left(\alpha, \beta \mid \chi^{(p+1)}\right) \tag{2.26}
\end{equation*}
$$

Taking logarithms, dividing by n, and letting $p \rightarrow \infty$ with m fixed gives

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n^{-1} \log Z_{n}\left(\alpha, \beta \mid \chi_{0}\right) \leqslant\left\langle m^{-1} \log Z_{m}^{*}(\alpha, \beta \mid \chi)\right\rangle \tag{2.27}
\end{equation*}
$$

almost surely, where we have again used the strong law of large numbers. Letting $m \rightarrow \infty$ in (2.25) and (2.27) and using lemma 2.4 gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log Z_{n}\left(\alpha, \beta \mid \chi_{0}\right)=\bar{\kappa}(\alpha, \beta) \tag{2.28}
\end{equation*}
$$

for almost all colourings χ_{0}.

3. The form of the phase diagram

In this section we prove some results concerning the α and β dependence of the quenched average free energy which enable us to make some predictions about the form of the phase diagram in the (α, β)-plane.

Lemma 3.1. For fixed $\alpha \geqslant 0$ the limiting quenched average free energy $\bar{\kappa}(\alpha, \beta)$ is independent of β for $\beta \leqslant 0$.

Proof. For fixed n and a fixed colouring χ let v_{A}^{o} and v_{B}^{o} be the number of vertices coloured A and B respectively. For $\alpha \geqslant 0$ and $\beta \leqslant 0$ we have

$$
\begin{align*}
Z_{n}(\alpha, \beta \mid \chi) & =\sum_{v_{A}, v_{B}} c_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha v_{A}+\beta v_{B}} \\
& \leqslant \sum_{v_{A}, v_{B}} c_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha v_{A}^{o}} \\
& =c_{n} \mathrm{e}^{\alpha v_{A}^{o}} \tag{3.1}
\end{align*}
$$

where c_{n} is the number of n-edge self-avoiding walks. Similarly

$$
\begin{align*}
Z_{n}(\alpha, \beta \mid \chi) & =\sum_{v_{A}, v_{B}} c_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha v_{A}+\beta v_{B}} \\
& \geqslant \sum_{v_{A}} c_{n}\left(v_{A}, 0 \mid \chi\right) \mathrm{e}^{\alpha v_{A}} \\
& \geqslant c_{n}\left(v_{A}^{o}, 0 \mid \chi\right) \mathrm{e}^{\alpha v_{A}^{o}} \\
& \geqslant c_{n-1}^{+} \mathrm{e}^{\alpha v_{A}^{o}} \tag{3.2}
\end{align*}
$$

where c_{n}^{+}is the number of n edge self-avoiding walks with the first vertex at the origin and confined to the half-space $z \geqslant 0$. Since (Hammersley 1957, Whittington 1975)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log c_{n}^{+}=\lim _{n \rightarrow \infty} n^{-1} \log c_{n} \equiv \kappa<\infty \tag{3.3}
\end{equation*}
$$

where κ is the connective constant of the simple cubic lattice, we have, from (3.1) and (3.2),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}(\alpha, \beta \mid \chi)\right\rangle=\kappa+\alpha \lim _{n \rightarrow \infty}\left[v_{A}^{o} / n\right] \equiv \kappa+\alpha p_{A} \tag{3.4}
\end{equation*}
$$

The right-hand side is independent of β which completes the proof.
Of course, there is a similar result for the case of $\alpha \leqslant 0$ and $\beta \geqslant 0$. We next look at the first quadrant, $\alpha \geqslant 0$ and $\beta \geqslant 0$.

Lemma 3.2. In the first quadrant, $\alpha, \beta \geqslant 0$, the free energy $\bar{\kappa}(\alpha, \beta)$ is singular along the curve $\alpha \mapsto \beta_{c}(\alpha)$ where $0 \leqslant \beta_{c}(\alpha) \leqslant \alpha p_{A} /\left(1-p_{A}\right)$.

Proof. From the previous lemma, and the monotonic non-decreasing nature of $\bar{\kappa}(\alpha, \beta)$ we see that

$$
\begin{equation*}
\bar{\kappa}(\alpha, \beta) \geqslant \kappa+\alpha p_{A} \tag{3.5}
\end{equation*}
$$

for all β when $\alpha \geqslant 0$. A similar argument shows that

$$
\begin{equation*}
\bar{\kappa}(\alpha, \beta) \geqslant \kappa+\beta\left(1-p_{A}\right) \tag{3.6}
\end{equation*}
$$

for all α when $\beta \geqslant 0$. With α fixed at some positive value, take $\beta>\alpha p_{A} /\left(1-p_{A}\right)$. Then

$$
\begin{equation*}
\bar{\kappa}(\alpha, \beta) \geqslant \kappa+\beta\left(1-p_{A}\right)>\kappa+\alpha p_{A} . \tag{3.7}
\end{equation*}
$$

Hence at fixed $\alpha>0 \bar{\kappa}(\alpha, \beta)$ is a constant for $\beta \leqslant 0$ and greater than this constant for $\beta>\alpha p_{A} /\left(1-p_{A}\right)$. The function must therefore have a singularity at some value of β in the interval $0 \leqslant \beta \leqslant \alpha p_{A} /\left(1-p_{A}\right)$, which proves the theorem.

Although this lemma establishes that the free energy is singular along a curve in the first quadrant, it does not answer the question about whether or not there is a non-trivial region in which the walk is localized at the boundary $z=0$. The next theorem addresses this question.

Theorem 3.3. In the region of the first quadrant, $0 \leqslant \beta \leqslant \alpha p_{A} /\left(1-p_{A}\right)$, the singularity in $\bar{\kappa}(\alpha, \beta)$ occurs for β less than some constant, uniformly in α. Similarly, in the region $0 \leqslant \alpha \leqslant \beta\left(1-p_{A}\right) / p_{A}$, the singularity occurs for α less than some constant, uniformly in β.

Proof. Consider the fixed sequence of $k+6$ colours, $\eta=A A B_{k+2} A A, k \geqslant 2$, where the subscript indicates $k+2$ copies of B. For a set of n Bernoulli trials where the outcome is A with probability p_{A} and B with probability $1-p_{A}, 0<p_{A}<1$, there exists a $\delta=\delta\left(k, p_{A}\right)>0$, such that there are at least δn disjoint occurrences of η for all except exponentially few sequences of trials. For each such sequence of colours consider the walks in which, for each of the first δn occurrences of η, the first and last $B \mathrm{~s}$ are in $z=0$ and the middle $k B \mathrm{~s}$ are in $z<0$, and the rest of the walk is in $z>0$. This ensures that all the A-vertices are in $z>0$ and that $\delta n k B$-vertices are in $z<0$. There is at least one such walk (e.g. in which the subwalks in the $z>0$ and $z<0$ half-spaces are just straight lines in the x-direction). For each such colouring χ the partition function satisfies the inequality

$$
\begin{equation*}
Z_{n}(\alpha, \beta \mid \chi) \geqslant \mathrm{e}^{v_{A}^{o} \alpha+\delta n k \beta} . \tag{3.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\langle n^{-1} \log Z_{n}(\alpha, \beta \mid \chi)\right\rangle \geqslant 2^{-n}\left[2^{n}\left(1-\mathrm{e}^{-\gamma n}\right)\right]\left(p_{A} \alpha+\delta k \beta\right) \tag{3.9}
\end{equation*}
$$

for some positive γ, and, letting $n \rightarrow \infty$,

$$
\begin{equation*}
\bar{\kappa}(\alpha, \beta) \geqslant p_{A} \alpha+\delta k \beta . \tag{3.10}
\end{equation*}
$$

For fixed $\alpha>0$ we know that $\bar{\kappa}(\alpha, \beta)=\kappa+\alpha p_{A}$ for $\left.\beta<\beta_{c}(\alpha)\right)$. Hence

$$
\begin{equation*}
\beta_{c}(\alpha) \leqslant \frac{\kappa}{\delta k} \tag{3.11}
\end{equation*}
$$

For α sufficiently large this is less than $\alpha p_{A} /\left(1-p_{A}\right)$ so that we have a non-trivial region in which localization occurs. Similarly, for fixed sufficiently large β there is a singularity in $\bar{\kappa}(\alpha, \beta)$ for some $\alpha \leqslant \kappa / \delta^{\prime} k<\beta\left(1-p_{A}\right) / p_{A}$ where $\delta^{\prime}>0$.

This implies that there is a region of the first quadrant where the walk is localized at the interface, in the sense that it has a positive density of vertices in $z=0$.

We next examine the third quadrant, $\alpha \leqslant 0, \beta \leqslant 0$. We first consider $\alpha<0, \beta>0$ where $\bar{\kappa}(\alpha, \beta)=\kappa+\left(1-p_{A}\right) \beta$, independent of α. This result, combined with a lower bound on $\bar{\kappa}(\alpha, \beta)$ in the third quadrant, gives some information on the location of the phase boundary from the delocalized to the localized phase. The idea is to make a connection to the problem of adsorption at an impenetrable plane, which has been investigated for a random copolymer by Orlandini et al (1999). Let $b_{n}^{+}\left(w_{A} \mid \chi\right)$ be the number of n-edges self-avoiding walks with
colouring χ, beginning at the origin and confined to the half-space $z \geqslant 0$, with exactly w_{A} A-vertices in the plane $z=0$. Define the partition function

$$
\begin{equation*}
B_{n}^{+}(\omega \mid \chi)=\sum_{w_{A}} b_{n}^{+}\left(w_{A} \mid \chi\right) \mathrm{e}^{\omega w_{A}} \tag{3.12}
\end{equation*}
$$

It is known (Orlandini et al 1999) that the limiting quenched average free energy

$$
\begin{equation*}
B(\omega)=\lim _{n \rightarrow \infty}\left\langle n^{-1} \log B_{n}^{+}(\omega \mid \chi)\right\rangle \tag{3.13}
\end{equation*}
$$

exists for all $\omega<\infty$ and that this free energy is singular at $\omega=\omega_{c}\left(p_{A}\right)$ where $0<\omega_{c}\left(p_{A}\right) \leqslant$ $\left(\kappa-\kappa^{\prime}\right) / p_{A}, \kappa$ is the connective constant of the simple cubic lattice and κ^{\prime} is the connective constant of the square lattice.

Theorem 3.4. $\bar{\kappa}(\alpha, \beta)$ is singular in the third quadrant on a curve $\alpha \mapsto \beta_{c}(\alpha)$ where $\beta_{c}(\alpha) \geqslant-\left(\kappa-\kappa^{\prime}\right) /\left(1-p_{A}\right)$.

Proof. Fix $\alpha<0$. We are interested in the behaviour of the free energy for $\beta<0$. Clearly,

$$
\begin{equation*}
Z_{n}(\alpha, \beta \mid \chi) \geqslant \sum_{v_{B}} c_{n}\left(0, v_{B} \mid \chi\right) \mathrm{e}^{\beta v_{B}} \tag{3.14}
\end{equation*}
$$

If we confine the walk to the half-space $z \leqslant 0$ then the number of B-vertices in $z=0, w_{B}$, is given by

$$
\begin{equation*}
w_{B}=v_{B}^{o}-v_{B} \tag{3.15}
\end{equation*}
$$

so that $c_{n}\left(0, v_{B} \mid \chi\right) \geqslant b_{n}^{+}\left(w_{B}\right)$. Hence

$$
\begin{align*}
Z_{n}(\alpha, \beta \mid \chi) & \geqslant \sum_{v_{B}} c_{n}\left(0, v_{B} \mid \chi\right) \mathrm{e}^{\beta v_{B}} \\
& \geqslant \sum_{w_{B}} b_{n}^{+}\left(w_{B}\right) \mathrm{e}^{\beta v_{B}^{o}-\beta w_{B}} \\
& =\mathrm{e}^{\beta v_{B}^{o}} \sum_{w_{B}} b_{n}^{+}\left(w_{B}\right) \mathrm{e}^{-\beta w_{B}} \\
& =\mathrm{e}^{\beta v_{B}^{o}} B_{n}^{+}(-\beta \mid \chi) \tag{3.16}
\end{align*}
$$

Taking logarithms, dividing by n, averaging over χ and letting $n \rightarrow \infty$ gives

$$
\begin{equation*}
\bar{\kappa}(\alpha, \beta) \geqslant \beta\left(1-p_{A}\right)+B(-\beta) . \tag{3.17}
\end{equation*}
$$

However, using the results of Orlandini et al (1999), $B(-\beta)$ is equal to κ for $\beta \geqslant \beta_{c}$ and greater than κ for $\beta<\beta_{c}$. Moreover, $0<-\beta_{c} \leqslant\left(\kappa-\kappa^{\prime}\right) /\left(1-p_{A}\right)$. Hence

$$
\begin{equation*}
\bar{\kappa}(\alpha, \beta)>\kappa+\left(1-p_{A}\right) \beta \tag{3.18}
\end{equation*}
$$

for $-\beta>\left(\kappa-\kappa^{\prime}\right) /\left(1-p_{A}\right)$.
In figure 1 we sketch a phase diagram which is consistent with the results of this section. Note that we have not proved that the phase boundaries pass through the origin.

Figure 1. Sketch of the expected form of the phase diagram for $p_{A}=\frac{1}{2}$. This form is consistent with the rigorous results obtained in section 3 .

4. Numerical results

In this section we present some exact enumeration and series analysis data which we use to investigate the details of the phase diagram in the special case $p_{A}=\frac{1}{2}$. We have enumerated self-avoiding walks with up to 20 edges on Z^{3} keeping track of what we call the touch map of the walks. That is, with each walk we associate a string of n letters, each of which is a, b or s. An a in the i th position of the string means that vertex i has positive z-coordinate, while a b means that vertex i has negative z-coordinate and an s denotes a zero z-coordinate. For each such possible string we record the number of self-avoiding walks which correspond to that string. The set of strings and their corresponding counts constitute the touch map. The touch map is independent of the colouring χ but can be used with a particular colouring sequence to compute the partition function $Z_{n}(\alpha, \beta \mid \chi)$ for that colouring. We then compute $\kappa_{n}(\alpha, \beta \mid \chi)=n^{-1} \log Z_{n}(\alpha, \beta \mid \chi)$ and its average, $\left\langle\kappa_{n}(\alpha, \beta \mid \chi)\right\rangle$, over all 2^{n} colourings χ.

We expect that

$$
\begin{equation*}
Q_{n}(\alpha, \beta)=\mathrm{e}^{\left\langle\kappa_{n}(\alpha, \beta \mid x)\right\rangle n} \sim n^{\gamma_{1}-1} \mathrm{e}^{\bar{\kappa}(\alpha, \beta) n} \tag{4.1}
\end{equation*}
$$

when the walks are in the delocalized phase, where γ_{1} is the surface exponent analogous to the layer susceptibility exponent. In the localized phase (where the system has a two-dimensional quality in that the walks cross the plane $z=0$ a positive density of times) we expect a similar expression but with γ_{1} replaced by $\gamma_{2}=\frac{43}{32}$, the exponent for self-avoiding walks in two dimensions (Nienhuis 1982). Since the transition is expected to be second order a third exponent associated with a tricritical behaviour is expected along the critical curve. From (4.1) we obtain

$$
\begin{equation*}
R_{n}(\alpha, \beta)=\sqrt{\frac{Q_{n}}{Q_{n-2}}}=\mathrm{e}^{\bar{\kappa}(\alpha, \beta)}\left(1+\frac{\gamma_{1}-1}{n}+\mathrm{O}\left(n^{-2}\right)\right) \tag{4.2}
\end{equation*}
$$

Plotting $R_{n}(\alpha, \beta)$ against $1 / n$ should produce an asymptotically linear curve with $\mathrm{e}^{\bar{\kappa}(\alpha, \beta)}$ as the intercept. Since $\gamma_{1}<1$ in three dimensions (see, for instance, Hegger and Grassberger 1994) the intercept should be approached from below, while the system is in the delocalized phase. In the localized phase γ_{1} is replaced by γ_{2} (which is greater than 1) so the intercept should be approached from above. Of course the situation is complicated by crossover effects at small values of n.

Consider the behaviour in the first quadrant ($\alpha, \beta>0$). If we fix $\alpha>0$ and take a point in the fourth quadrant (where $\beta<0$) we know, from section 3, that the intercept will be $\mathrm{e}^{\kappa+\alpha / 2}$, independent of β. As β is increased we should reach a critical value $\beta_{c}(\alpha)$ beyond which the intercept will be strictly greater than $\mathrm{e}^{\kappa+\alpha / 2}$. The point at which the intercept becomes dependent on β signals the phase boundary. This, together with the change in slope of the ratio plot (discussed in the previous paragraph), should allow us to locate the phase boundary approximately. We have computed $R_{n}(\alpha, \beta)$ as a function of n and β for various positive values of α and carried out the ratio analysis as indicated above.

Since we believe that the behaviour will be governed by the exponent γ_{1} in the delocalized phase we can make use of the value of γ_{1} to accelerate the convergence. If we define

$$
\begin{equation*}
R_{n}^{\prime}(\alpha, \beta)=R_{n}(\alpha, \beta) \frac{n}{n+\gamma_{1}-1} \tag{4.3}
\end{equation*}
$$

then, from (4.2), we see that

$$
\begin{equation*}
R_{n}^{\prime}(\alpha, \beta)=\mathrm{e}^{\bar{\kappa}(\alpha, \beta)}\left(1+\mathrm{O}\left(n^{-2}\right)\right) \tag{4.4}
\end{equation*}
$$

Plotting $R_{n}^{\prime}(\alpha, \beta)$ against $1 / n$ should produce a curve with asymptotically zero slope provided that we are in the delocalized phase. (Even if the value used for γ_{1} is slightly incorrect the curve will still go to $\mathrm{e}^{\bar{\kappa}(\alpha, \beta)}$ as $n \rightarrow \infty$ but not with asymptotically zero slope.) We have used our exact enumeration data (together with a recent estimate for κ due to MacDonald et al (2000)) to estimate γ_{1} and we find $\gamma_{1}=0.680 \pm 0.004$ in good agreement with the Monte Carlo estimate (Hegger and Grassberger 1994) of 0.679 ± 0.002. We have used $\gamma_{1}=0.68$ in most of our analysis. Similarly, one expects that in the localized phase the behaviour will be governed by the exponent γ_{2}. In practice, this turns out to be true well inside the localized region, but with a slow crossover after the phase boundary is passed.

It is more convenient to look at

$$
\begin{equation*}
A_{n}(\alpha, \beta)=R_{n}^{\prime}(\alpha, \beta) \mathrm{e}^{-\bar{\kappa}(\alpha, 0)} \tag{4.5}
\end{equation*}
$$

since, at fixed α, A_{n} will be equal to unity for β values which correspond to the delocalized phase. In figure 2 we give four examples of ratio plots of A_{n} with two values of the exponent (γ_{1} and γ_{2}) and the corresponding linear extrapolants $\left(n A_{n}-(n-2) A_{n-2}\right) / 2$, at different values of β, for $\alpha=1.7$. For $\beta=0$ and for $\beta=0.4$ we see clear evidence that A_{n} (when the exponent being used is γ_{1}) is approaching unity with asymptotically zero slope. For $\beta=1.2$ it is quite clear that the curves are approaching a value greater than unity so that the system is clearly in the localized phase. The curves for $\beta=1.0$ suggest that the transition is somewhere in this region.

For some values of α, increasing β still further might give rise to a second transition, this time from the localized phase to a phase in which the walk is delocalized, but now into the region with $z<0$. From the arguments given in the proof of lemma 3.2 we know that

$$
\begin{equation*}
\bar{\kappa}(\alpha, \beta) \geqslant \kappa+\beta / 2 \tag{4.6}
\end{equation*}
$$

and this inequality will be an equality in this delocalized phase. One can therefore examine the behaviour of R_{n} (or R_{n}^{\prime} or A_{n}) at fixed α, and look for values of β beyond which the intercept is equal to $\mathrm{e}^{\kappa+\beta / 2}$.

Figure 2. $A_{n}(\alpha, \beta)$ plotted against $1 / n$ for $\alpha=1.7$ and (a) $\beta=0$, (b) $\beta=0.4$, (c) $\beta=1.0$ and (d) $\beta=1.2$. A_{n} with $\gamma_{1}=0.68(+)$, and the corresponding linear extrapolant (*). A_{n} with $\gamma_{2}=\frac{43}{32}(\times)$ and the corresponding linear extrapolant (\square).

In the third quadrant the situation is quite similar. In this case we fix $\alpha<0$ and calculate R_{n} as a function of n and β, starting with $\beta>0$. In the second quadrant ($\alpha<0, \beta>0$) the intercept will be $\mathrm{e}^{\kappa+\beta / 2}$ and will change with β in this way as β is decreased, until we reach $\beta_{c}(\alpha)$ after which point the intercept will be strictly larger than this value. Again we expect a change in the sign of the slope of the ratio plots around the phase boundary, because the behaviour should be controlled by γ_{1} in the delocalized phase and by γ_{2} in the localized phase. We can make use of the fact that we know γ_{2} and have an accurate estimate of γ_{1}, and form the function $R_{n}^{\prime}(\alpha, \beta)$ as for the first quadrant. Again it is convenient to define a function analogous to that defined in (4.5) but now we define

$$
\begin{equation*}
A_{n}(\alpha, \beta)=R_{n}^{\prime}(\alpha, \beta) \mathrm{e}^{-\bar{\kappa}(0, \beta)} \tag{4.7}
\end{equation*}
$$

Figure 3 shows the behaviour of A_{n} and its linear extrapolants at four different values of β for $\alpha=-3.0$. Once again we are looking for the value of β at which the intercept ceases to

Figure 3. $A_{n}(\alpha, \beta)$ plotted against $1 / n$ for $\alpha=-3.0$ and (a) $\beta=0$, (b) $\beta=-0.2$, (c) $\beta=-0.4$ and $(d) \beta=-0.6$. A_{n} with $\gamma_{1}=0.68(+)$, and the corresponding linear extrapolant $(*) . A_{n}$ with $\gamma_{2}=\frac{43}{32}(\times)$ and the corresponding linear extrapolant (\square).
be equal to unity. For $\beta=0$ and -0.2 the graphs suggest that the intercept is unity, while it is certainly greater than unity when $\beta=-0.6$. It seems that the critical value of β is close to -0.4 . Our final estimates of the locations of the phase boundaries in the first and third quadrants are given in figure 4.

We have also used Monte Carlo methods to investigate the localization behaviour. The Monte Carlo algorithm which we have used is a Markov chain algorithm. The underlying symmetric Markov chain uses a mixture of local and global moves in different proportions depending on the relative values of α and β. In the asymmetric regime $(\alpha / \beta \gg 1)$ where the walk is largely confined to a half-space, pivot (Lal 1969, Madras and Sokal 1988) and cut-andpermute moves (Causo 2000) are used. These latter moves help to mitigate the quasi-ergodic problems which the pivot algorithm can display in a quasi-confined geometry. The elementary move in the cut-and-permute scheme is as follows. At a randomly chosen vertex of the walk, the walk is disconnected into two subwalks, w_{1}, attached to the surface at a vertex of degree one,

Figure 4. Estimated locations of the phase boundaries in the first and third quadrants. In the third quadrant we also include bounds obtained using theorem 3.4 and a numerical estimate of the location of the singularity in $B(-\beta)$. The diagonal line $\beta=\alpha$ is included as a guide to the eye.
and w_{2}. A randomly chosen lattice symmetry operation is applied to w_{2}, and the walk is rebuilt permuting the order of the two subwalks. For details see Causo (2000). In the region where $\beta \approx \alpha$ local moves (Verdier and Stockmayer 1962) are used with increased probability, while the cut-and-permute moves are used with lower probability. The whole process is implemented using a multiple Markov chain technique (Geyer 1991, Tesi et al 1996). We have estimated quantities such as $\left\langle v_{A}\right\rangle,\left\langle v_{B}\right\rangle,\left\langle v_{A}^{2}\right\rangle-\left\langle v_{A}\right\rangle^{2}$ and $\left\langle v_{B}^{2}\right\rangle-\left\langle v_{B}\right\rangle^{2}$ as a function of β at fixed α. In figure 5 we show the β dependence of $n^{-1}\left\langle v_{B}\right\rangle$ and $n^{-1}\left[\left\langle v_{B}^{2}\right\rangle-\left\langle v_{B}\right\rangle^{2}\right]$ at $\alpha=-3$. The results are for $n=1000$ and for an average over 12 random colourings of the walk. For β close to zero we see that the B-vertices are essentially all in the $z<0$ phase, and the walk is delocalized. As β decreases the number of B-vertices in the $z<0$ phase decreases and, in fact, these vertices primarily go into the interfacial plane $z=0$, so that the walk becomes localized around the interface. The behaviour of the 'heat capacity' $n^{-1}\left[\left\langle v_{B}^{2}\right\rangle-\left\langle v_{B}\right\rangle^{2}\right]$ is exactly what would be expected from theorem 3.4, and especially from (3.16). The heat capacity is close to zero until β reaches a sufficiently negative value, and then goes through a peak whose shape is characteristic of the asymmetric transition seen in adsorption problems.

5. Discussion

We have considered a coloured self-avoiding walk model of a random copolymer at an interface between two immiscible liquids. There are several different Hamiltonians which one could choose to model such systems and we have chosen to study the case in which there is an energetic advantage for one comonomer to be in one phase and for the other comonomer to be in the other phase. There is no energetic penalty if a monomer is in the other phase, and

Figure 5. Monte Carlo estimates of $n^{-1}\left\langle v_{B}\right\rangle(\square)$ and $n^{-1}\left[\left\langle v_{B}^{2}\right\rangle-\left\langle v_{B}\right\rangle^{2}\right](\Delta)$ as a function of β for $\alpha=-3$ and $n=1000$.
there is no energetic advantage or penalty if a monomer is in the dividing surface between the two phases. For this case we have proved that the limiting quenched average free energy exists and that the system is thermodynamically self-averaging. In addition we have proved the existence of a phase transition from a delocalized phase to a localized phase, and derived bounds which give qualitative information concerning the shapes of the phase boundaries. In particular, these bounds are sufficient to establish that the localized region is a phase, and does not degenerate to a curve in the phase diagram.

We have used exact enumeration and series analysis data to map out details of the phase diagram, and to locate the phase boundaries, at least approximately. We have also reported Monte Carlo data which give information concerning the nature of the localization.

There is a related model which can, to some extent, be handled in a similar way. In this case the dividing surface between the two phases does not have the special property that there is no energetic advantage or disadvantage for a monomer in this plane. In this case we write v_{A} for the number of A-vertices with non-negative z-coordinate and v_{B} for the number of B-vertices with negative z-coordinate. If $d_{n}\left(v_{A}, v_{B} \mid \chi\right)$ is the corresponding number of n-edge walks with colouring χ and

$$
\begin{equation*}
D_{n}(\alpha, \beta \mid \chi)=\sum_{v_{A}, v_{B}} d_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha v_{A}+\beta v_{B}} \tag{5.1}
\end{equation*}
$$

is the corresponding partition function, then the arguments in section 2 can be adapted to prove a similar set of results for this model. The results of section 3 concerning the behaviour of the free energy in the first, second and fourth quadrants all go over, with minor modifications, to this model. However, theorem 3.4 has no analogous version since there is no special plane into which the walk can retreat to avoid unfavourable interactions with the two solvents.

Let v_{A}^{*} be the number of A-monomers with negative z-coordinate and v_{B}^{*} be the number of B-monomers with non-negative z-coordinate. Then

$$
\begin{equation*}
v_{A}+v_{A}^{*}=v_{A}^{o} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{B}+v_{B}^{*}=v_{B}^{o} \tag{5.3}
\end{equation*}
$$

We note that

$$
\begin{equation*}
D_{n}(-\alpha,-\beta \mid \chi)=\mathrm{e}^{-\alpha v_{A}^{o}-\beta v_{B}^{o}} D_{n}(\alpha, \beta \mid \chi) \tag{5.4}
\end{equation*}
$$

so that in this model there is a mapping of the free energy between the first and third quadrants.
This model is related to a model similar in spirit to those considered by Bolthausen and den Hollander (1997) and by Maritan et al (1999). Those authors considered models in which a monomer can be energetically favoured in one solvent but energetically penalized in the other solvent. We can construct a model which has an energetic penalty for a monomer to be in the unfavourable solvent by writing the partition function

$$
\begin{align*}
\left.Q_{n}(\alpha, \beta \mid \chi)\right) & =\sum_{v_{A}, v_{B}} d_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{\alpha v_{A}+\beta v_{B}-\alpha v_{A}^{*}-\beta v_{B}^{*}} \\
& =\mathrm{e}^{-\alpha v_{A}^{o}-\beta v_{B}^{o}} \sum_{v_{A}, v_{B}} d_{n}\left(v_{A}, v_{B} \mid \chi\right) \mathrm{e}^{2 \alpha v_{A}+2 \beta v_{B}} \tag{5.5}
\end{align*}
$$

so that
$\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Q_{n}(\alpha, \beta \mid \chi)\right\rangle=-\alpha p_{A}-\beta\left(1-p_{A}\right)+\lim _{n \rightarrow \infty}\left\langle n^{-1} \log D_{n}(2 \alpha, 2 \beta \mid \chi)\right\rangle$.
Setting $\alpha=\beta$ reduces this to something like the model used by Maritan et al (but they used a Gaussian distribution of charges, instead of the two 'charges' appearing in our model). Their symmetric model (or neutral case) corresponds to $p_{A}=\frac{1}{2}$ and their more general model corresponds to $p_{A} \neq \frac{1}{2}$, but still with $\beta=\alpha$.

Acknowledgments

The authors would like to thank Frank den Hollander for many useful conversations, and NSERC of Canada for financial support.

References

Biskup M and den Hollander F 1999 Ann. Appl. Probab. 9668
Bolthausen E and den Hollander F 1997 Ann. Probab. 251334
Causo M S 2000 Cut-and-permute algorithm for self-avoiding walks in the presence of surfaces Preprint
Garel T, Orland H and Shakhnovich E I 1990 J. Chem. Phys. 932043
Geyer C J 1991 Computer science and statistics Proc. 23rd Symp. on the Interface (Fairfax Station: Interface Foundation) pp 156-63
Hammersley J M 1957 Proc. Camb. Phil. Soc. 53642
Hammersley J M and Welsh D J A 1962 Q. J. Math. 13108
Hegger R and Grassberger P 1994 J. Phys. A: Math. Gen. 274069
Hille E 1948 Functional Analysis and Semi-Groups (Am. Math. Soc. Colloq. Publ. 31) (New York: American Mathematical Society)
Lal M 1969 Mol. Phys. 1757
MacDonald D, Joseph S, Hunter D L, Moseley L L, Jan N and Guttmann A J 2000 J. Phys. A: Math. Gen. 335973
Madras N and Sokal A D 1988 J. Stat. Phys. 50109
Maritan A, Riva M P and Trovato A 1999 J. Phys. A: Math. Gen. 32 L275
Nienhuis B 1982 Phys. Rev. Lett. 491062
Orlandini E, Tesi M C and Whittington S G 1999 J. Phys. A: Math. Gen. 32469
Stepanow S, Sommer J-U and Erukhimovich I Y 1998 Phys. Rev. Lett. 814412
Tesi M C, Janse van Rensburg E J, Orlandini E and Whittington S G 1996 J. Stat. Phys. 82155
Verdier P and Stockmayer W H 1962 J. Chem. Phys. 36227
Whittington S G 1975 J. Chem. Phys. 63779

